France Université Numerique

Introduction à la statistique avec R - Université Paris-Sud

France Université Numerique
En Ligne

Gratuit
Ou préférez-vous appeler directement le centre?

Infos importantes

Typologie Formation
Méthodologie En ligne
Début Dates au choix
  • Formation
  • En ligne
  • Début:
    Dates au choix
Description

Ce cours permet d’apprendre la statistique à l’aide du logiciel libre R.

Le recours aux mathématiques est minimal. L’objectif est de savoir analyser des données, de comprendre ce que l’on fait, et de pouvoir communiquer ses résultats.

Ce cours s’adresse aux étudiants et praticiens de toutes disciplines qui recherchent une formation pratique. Il sera utile à toute personne ayant le besoin d’analyser un jeu de données réel dans le cadre d’un enseignement, de son activité professionnelle ou de recherche, ou par simple curiosité d’analyser un jeu de données par soi-même (données du web, données publiques…).

Le cours s’appuie sur le logiciel libre R qui est un des logiciels de statistique les plus puissants disponibles actuellement.

Les méthodes abordées sont : les techniques descriptives, les tests, l’analyse de variance, les modèles de régression linéaire et logistique, les données censurées (de survie).

Installations (1)
Où et quand

Lieu

Début

En ligne

Début

Dates au choixInscription ouverte

À tenir en compte

· Prérequis

Il n’y a pas de pré-requis pour suivre ce cours. Des connaissances de base en algèbre ou en programmation sont utiles mais ne sont pas nécessaires. En revanche, la volonté d’apprendre à analyser un jeu de données par soi-même est essentielle.

Questions / Réponses

Pose une question et d'autres utilisateurs vous répondrons

Qui voulez-vous pour répondre à votre question ?

On publiera seulement ton nom et prénom et ta question

Performances de ce centre

Ce centre a démontré ses qualités sur Emagister
3 ans avec Emagister

Qu'apprend-on avec cette formation ?

Statistique
Escription d’une variable
Ssociation entre variables
Pratique des tests
Régression logistique

Programme

Semaine 1Introduction aux statistiques et à R,description d’une variable
  • Introduction
  • Chapitre 1 : Définitions
  • Chapitre 2 : Représentations graphiques
  • Chapitre 3 : Mesures de position et de dispersion : les principes
  • Chapitre 4 : Mesures de position et de dispersion : la pratique
  • Lab 1 : Introduction à R studio, manipulation des fichiers et des variables
Semaine 2Intervalles de confiance, association entre variables
  • Chapitre 5 : Intervalles de confiance
  • Chapitre 6 : Coefficient de corrélation
  • Chapitre 7 : Risque relatif et odds-ratio
  • Lab 2 : Manipulation de données, résumés numériques et graphiques
  • Lab 3 : RMarkdown et rapport automatisé
Semaine 3Tests statistiques et pratique des tests
  • Chapitre 8 : Tests statistiques : le “p”
  • Chapitre 9 : Tests statistiques : l’approche de Neyman et Pearson
  • Chapitre 10 : Comparaison de deux pourcentages
  • Chapitre 11 : Comparaison de deux moyennes
  • Chapitre 12 : Test de nullité d’une corrélation, divers
  • Lab 4 : Mesures d'association, tests statistiques, update sur RMarkdown
Semaine 4Régression linéaire simple et multiple, régression logistique
  • Chapitre 13 : Régression linéaire simple
  • Chapitre 14 : Régression linéaire, corrélation et test t
  • Chapitre 15 : Régression linéaire multiple, analyse de variance
  • Chapitre 16 : Introduction à la régression logistique
  • Chapitre 17 : Régression logistique multiple
  • Lab 5 : Régression linéaire et logistique
Semaine 5Données de survie (censurées), méthodes exploratoires multidimensionnelles
  • Chapitre 18 : Données de survie ou censurées
  • Chapitre 19 : Tests et modèles pour données censurées
  • Chapitre 20 : Introduction aux méthodes exploratoires multidimensionnelles
  • Chapitre 21 : Analyse en composantes principales
  • Chapitre 22 : Classification hiérarchique